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ABSTRACT

Chemical kinetics and reaction engineering consists of the phenomenological framework for the
disentanglement of reaction mechanisms, optimization of reaction performance and the rational design
of chemical processes. Here, we utilize feed-forward artificial neural networks as basis functions to
solve ordinary differential equations (ODEs) constrained by differential algebraic equations (DAEs)
that describe microkinetic models (MKMs). We present an algebraic framework for the mathematical
description and classification of reaction networks, types of elementary reaction, and chemical species.
Under this framework, we demonstrate that the simultaneous training of neural nets and kinetic model
parameters in a regularized multi-objective optimization setting leads to the solution of the inverse
problem through the estimation of kinetic parameters from synthetic experimental data. We analyze a
set of scenarios to establish the extent to which kinetic parameters can be retrieved from transient
kinetic data, and assess the robustness of the methodology with respect to statistical noise. This
approach to inverse kinetic ODEs can assist in the elucidation of reaction mechanisms based on
transient data.

Keywords physics-informed neural network, surrogate approximator, physically informed neural
network, catalysis, transient, chemical kinetics

1 Introduction

In recent decades, considerable attention has been devoted to chemical process intensification through the optimal design
of unit operations based on rigorous modeling of thermodynamics, heat, mass and momentum transport, and chemical
reactions [1]. Selectivity and yield of a chemical transformation, which are key factors in economic evaluation and
design of associated unit operations, are determined by the intrinsic kinetics, transport resistances and thermodynamics
constraints. The detailed description of chemical kinetics, especially in heterogeneous catalysis, is hence of utmost
importance in the design and operation of chemical processes. Kinetic models provide the phenomenological framework
for the elucidation of reaction mechanism, optimization of reaction performance, and process design [2]. Structurally,
the detailed description of a chemical reaction network consists of the set of elementary steps involving bond breaking
and/or formation from reactants to products [3, 4]. Chemical kinetics can be described in terms of the transition-state
barriers between thermodynamically stable intermediate states. Despite the high complexity of chemical kinetics
networks, only few elementary steps typically control catalytic activity [5, 6, 7].

The mathematical description of chemical process models has departed from kinetic models that assume a single
rate-limiting step and become more comprehensive [8]. The analysis and elucidation of reaction mechanism have
benefited from the increasing accuracy of computational chemistry methods such as density functional theory (DFT).
These advances in computational capabilities have led to an increased prevalence of “bottom-up” kinetic models.
In the bottom-up approach, DFT-derived free energies from proposed reaction mechanisms give rise to free energy
diagrams. The ensuing microkinetic models (MKMs) have provided insights into rate-controlling steps [7] and trends
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in catalytic activity in terms of reaction conditions and catalyst compositions [9, 10]. However, bottom-up modelling
of complex reaction networks requires in-depth understanding of the detailed atomic structure of active sites as well
as the molecular structure of the thermodynamically stable intermediate species and dominant elementary reactions.
Moreover, assumptions are often required to connect the molecular-scale models with measurable catalytic quantities
such as turnover frequencies, yields, and selectivities. The mean-field approximation (MFA) is typically invoked to
avoid the need for a specific spatial description of catalytic active domains [11]. Transport limitations on the surface are
regarded as negligible or averaged out uniformly across the available catalyst surface. This requires adsorbate-adsorbate
interactions to be either neglected or included as coverage-dependent properties [12, 13, 14]. For more heterogeneous
or non-ideal systems, rigorous kinetic Monte Carlo methods can be used to build coarse-grained representations of
catalyst active sites, allowing for an explicit description of diffusive processes and surface interactions [15]. Models of
intermediate complexity, combining the MFA hierarchically in clusters, which benefits from the mathematical simplicity
of the former and the ability to capture adlayer non-ideality of the latter, have also been considered [16]. However,
these models are more difficult to parameterize, and in the absence of diffusion limitations and adsorbate-adsorbate
interaction, studies by Hoffmann and Bliggard [17] and by Andersen et. al. [18] have shown that results derived from
mean-field models approximate those of complex kinetic Monte Carlo schemes. Moreover, Reuter et. al. demonstrated
that MFA models can be re-parameterized to reflect the results of complex kinetic Monte Carlo with great generalization
properties [19]. These results suggest that the mean-field framework is promising for even complex catalytically active
domains, though it may be necessary to depart from a direct mapping back to the molecular-scale system to obtain
reliable results with the MFA.

Despite advances in first-principles and empirical mechanism elucidation, obtaining a bottom-up description of dynamic
catalyst states over time-on-stream under operating conditions remains inherently challenging and computationally
expensive. Uncertainties from first-principles calculated thermochemistry propagate exponentially to kinetic models
turn-over frequencies, and their estimation has been an active are research both of conventional and Bayesian parameter
estimation fields [20]. It is also dependent on the specific system under study, since changes in catalyst state under
different operating conditions may translate into shifts in the predominant chemical pathway, altering the selectivity and
yield [21]. For instance, the carbide-promoted Fischer-Tropsch reaction is a complex mechanism where the presence
of carbide-, oxygen- and metallic-rich states exhibit strong dependence on reaction conditions [22, 23]. Adsorbate-
adsorbate interactions may also play a significant role in determining the preferential chemical pathway and the related
rate-controlling steps [14, 24]. Furthermore, catalytic systems often encompass multiple active-site domains with
different prevalent chemical pathways in which diffusive processes and adsorbate-adsorbate interaction may become
relevant, as exemplified by Li et. al. in their comparison between mean-field approximation and kinetic Monte Carlo
approaches for CO oxidation MKMs [25]. These nuances pose significant challenges in devising ab initio bottom-up
descriptions of kinetic systems, particularly in the case of complex multi-component catalysts or large product/reactant
molecules.

An alternative approach to kinetic model development is the “top-down” approach, where kinetic model parameters
are fitted to the results of kinetic experiments. The top-down approach avoids the need for an explicit description of
the catalyst active site, and can accommodate “lumped” reactions that include multiple elementary steps. However,
the resulting models provide less detailed insight, and may not generalize well to other reaction conditions. In the
top-down approach to chemical kinetics, the acquisition of steady-state data has traditionally been the foremost empirical
procedure for the analysis and validation of reaction mechanism hypotheses [4]. However, acquiring intrinsic kinetic
steady-state data is inherently laborious [26]. The design of experiments must ensure that mass- and heat-transfer
limitations are negligible to detach transport processes from kinetics, and experiments must be run for long periods of
times to reach steady state. More importantly, steady-state data is only controlled by the rate-limiting step at a given
condition, overshadowing the detailed description of other elementary steps that may be relevant under other operational
scenarios [27, 28, 29, 30, 31].

In contrast, dynamic or transient techniques to acquire kinetic data have been applied for nearly half a century [32,
33, 34, 35, 36], and have recently received renewed interest due to advances in numerical methods and computational
processing capabilities. Transient kinetics methods such as temporal analysis of products [37, 38, 39] (TAP) associated
with temperature-programmed reaction spectroscopy [40, 41, 42, 43] (TPRS), step-response experiments, steady-state
isotopic transient kinetic analysis [44, 45, 46] (SSITKA), and tapered element oscillating microbalance (TEOM) [47] are
so information-dense that a single series of states, gathered at their respective time points from one experiment, conveys
kinetic information that would require numerous steady-state experiments. However, this information is convoluted
with various other effects, making it difficult to extract meaningful intrinsic kinetic parameters. The temporal evolution
of chemical system states can be mathematically represented as sets of coupled ordinary or partial differential equations
encompassing the various state-changing steps, such as the elementary reactions and diffusive processes involved in a
chemical reaction. In the past decades intensive effort has been put into constructing ab-initio microkinetic models,
but recently there has been an increased focus on the related issue of catalyst optimization, parameter estimation or
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model selection based on experimental data [48, 49, 50, 51, 52, 53, 54]. Such techniques simultaneously probe multiple
elementary steps, potentially enabling more robust top-down microkinetic or “mesokinetic” models to be developed
from less experimental data. Notably, both top-down and bottom-up kinetic models are often informed by additional
experimental techniques such as operando [55] and in-situ photoelectron (XPS, LEED, TEM) and infrared (FT-IR)
spectroscopy, temperature programmed reduction (TRP) and desorption (TPD), as well as numerous other material
science characterization techniques including NMR, XAFS and XRD [56, 57, 2]. The coupling of these approaches
with kinetic models is generally qualitative or semi-quantitative, and there are limited examples where bottom-up and
top-down models are quantitatively combined or compared [50, 58, 59, 60, 61]. As the volume and variety of catalysis
data increases, it is necessary to explore new frameworks that facilitate the quantitative fusion of information from
various sources. One promising approach is the application of optimization techniques to minimize a loss function that
contains terms penalizing the deviation between the model and various types of catalytic data[50, 58].

Optimization of kinetic models requires the model to be evaluated many times, and relies on computing derivatives
of the model with respect to the kinetic parameters. To balance model accuracy with the computational cost of
successive evaluation of high-fidelity models, surrogate models (SMs), also referred to as reduced-order, meta- or
black-box models, have become an alternative functional mapping between model inputs and outputs [8]. SMs are
models of models for which, given data, parameters are estimated from the minimization of some error metric or merit
function. The construction of SMs necessarily relies on experimental data or data generated by mathematically complex
phenomenological or first-principles models. SMs also require a proper choice of sampling strategies for the input space,
since the computational cost of randomly sampling high dimensional spaces increases exponentially due to the “curse of
dimensionality”. Uniform, random, Latin-hypercube, central composite design and quasi-random low-discrepancy are
the most commonly adopted strategies for input space exploration [62], although more advanced strategies have recently
been devised [63]. Surrogate models can be based on physical models, flexible data-driven models, or a combination
thereof. In flexible model architectures, such as neural nets (NNs), model fitting generally depends on the ability to
calculate gradients across the multiple layers through the chain-rule in the back-propagation algorithm [64]. However,
to avoid the time-consuming process of estimating gradients or building the back-propagation structure, procedural
algorithms for automatic or algorithmic differentiation (AD) [65] are used to evaluate gradients across NN layers.

Several authors have proposed methods that rely on NNs for the solution of scientific problems involving ODEs and
PDEs either as approximators for their solutions or as surrogate models. Formative work regarding the utilization of
NNs as approximators for the solution of differential equations was introduced by Lagaris et. al. [66], which set the
groundwork for the recent development of the so called physics-informed neural networks, PINNs, by Karniadakis
et al. [67, 68]. In the context of surrogate model construction, other endeavors have demonstrated that particular
NN structures, such as residual networks (ResNets), resemble Euler-type discretization through successive time-
steps [69, 70, 71]. Subsequently, Neural ODE (NODE) surrogate models have emerged from the analogy between
the discrete time-domain in ResNet ODEs at their depth limits, which consists of an application of NNs to ODE that
contiguously describes the physical model in its domain independent of discretization [72], i.e. in the hypothetical
case of infinite recursive application of ResNets, where the discretization converges to a continuum. Following works
have corroborated that ResNet-type deep NNs converge to Neural ODEs in the deep limit under stochastic gradient
descent minimization [73]. The fundamental difference between PINNs and NODEs lies in their respective mappings.
A PINN acts as a surrogate “approximator” for an ODE or PDE solution or integral, where NNs constitute the functional
mapping between the independent variables and the states and their derivatives, and the physical model provides the
phenomenological connection or restriction between states and their respective gradients/derivatives that NNs must
satisfy. In NODEs, NNs instead constitute as mapping from states to their gradients/derivatives, in which case it acts as
a true surrogate model. While NODEs can replace unknown parts of a differential equation, PINNs are a basis set for
the solution of known differential equations.

In this work, we focus on the utilization of modified PINNs as a Surrogate Approximator (SA) for the solution of
microkinetic models (MKMs) under the MFA, which are fully represented by the chemical system’s stoichiometric
matrix [74, 75]. The MFA acts as a general surrogate for detailed kinetics, which could include not only the backbone
elementary reactions but also diffusive steps. MKMs consist of a set of elementary or irreducible reactions. The
elementary reactions involve the interaction of at most two individual species, in which the probability of occurrence
is proportional to their concentrations as in power-law kinetics, and whose probability of success is a function of
temperature, given by the Arrhenius law. We use this general mathematical representation to approach the solution of
known MKMs and address the issue of parameter fitting for kinetically relevant steps in complete MKMs.

By relying on PINNs, we resort to the universal approximation theorem for artificial neural networks (NNs) [76, 77, 78,
79] to propose strategies towards the design of SAs that can be utilized for solving (integrating through collocation)
kinetics ODEs, where differential algebraic equations (DAE) constraints must be satisfied. We introduce a framework for
the classification of reaction network types according to the nature of involved elementary reactions (e.g. homogeneous
systems, ad/desorption, reactions between surface intermediates). We further create reaction-type examples and apply
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our PINN-based approach, demonstrating the need for semi-quantitative information on intermediate composition to
fully recover ground-truth information on the MKM parameters. The results provide new tools for analysis of transient
kinetic data and insight into top-down analysis of complex reaction networks. The framework has the potential to enable
improved design of transient kinetic experiments and fusion of multi-modal transient experimental data in the future.

2 Methods

Given the methodological focus of this work, this section contains detailed mathematical formulations of the frameworks
used. More applied readers may wish to proceed directly to Sec. 3.

2.1 Mean-Field Chemical Kinetics Framework

Power-law kinetic models encompass a linear combination of chemical transformation events, whose sampling frequency
scales linearly with the concentration of each participant, and whose probability of success is given by the Arrhenius
law. The resulting set of intertwined molecular events is represented as a stack of ODEs, assigning the rate of change of
each species to the power-law kinetic expression arising from stoichiometry. Let c represent an array of concentrations
or concentration-related state variables like partial pressures, concentrations and coverage fractions, for species that are
unbound (like gases) or bound (adsorbed molecules or radicals), at time t. Then their rates of change, ċ, or the MKM,
is written as (1.1):

ċ = Mr(c, ✓) = M (k(✓) � f(c)) (1.1)

Where M 2 Zn⇥m is the corresponding stoichiometry matrix and f(·) : Rn
+ ! Rm

+ maps the concentrations
c := {c | c 2 Rn

+} to the concentration-based terms of power-law kinetics, and k := {k(✓) 2 Rm
+ , ✓ 2 R+} is

the temperature- and binding-energy-dependent, Arrhenius-like rate constant term. In this work, ✓ corresponds to
temperature (rather than coverage) to keep a consistent standard of bold uppercase variables corresponding to matrices,
normal uppercase variables corresponding to elements of a matrix, bold lowercase variables corresponding to vectors,
and normal lowercase variables corresponding to scalars.

2.1.1 Complex Reaction Networks - gdacs representation

We denote the subset of c for gas-phase species as cg := {ci | i 2 Cg}, for bounded gas-counterpart coverage fractions
as ca := {ci | i 2 Ca}, and for bounded intermediates/radicals on the catalyst surface as cs := {ci | i 2 Cs} (the
distinction between a and s is whether or not the adsorbed species is also sufficiently stable in the gas phase to be
detected). An exemplary reaction network is shown in Fig. 1. Under this notation, [i2{g,a,s}Ci = {1, 2, ...,m |m 2 N}
and \i2{g,a,s}Ci = ; (i.e. each species can only be in a single subset, and all species must be assigned to a subset).
The state-dependent reaction rate vector, denoted as r(c, ✓) := {r 2 Rm | r = k(✓) � f(c)}, comprises rates of
reaction (frequencies) associated with different kinds of elementary reactions: reactions in homogeneous phase, rg :=
{ri | i 2 Gg}, those involving adsorption-desorption, rd := {ri | i 2 Gd}, reactions between adsorbed molecules, ra :=
{ri | i 2 Ga}, reactions involving adsorbed molecules and radicals/intermediates on the surface, rc := {ri | i 2 Gc}, and
reactions between intermediates on the surface, rs := {ri | i 2 Gs}, such that [i2{g,d,a,c,s}Gi = {1, 2, ..., n |n 2 N}
and \i2{g,d,a,c,s}Gi = ;.

A full stoichiometry matrix in (1.2) embodies different types of reaction-type submatrices, where {i} ⇢ {g,d,a, c, s}
are the corresponding reaction types i as columns of M. One can, hence, classify the submatrices in the full stoichiometry
matrix in terms of reaction- and species-types, as summarized in Table 1.

Table 1: Stoichiometry Matrix Depth Connectivity - Reaction and Species Types

Species Types

Reaction Types

Gas
phase

g

Adsorbed
Molecules

a

Surface
Radicals

s

Homogeneous g Mgg - -
Ad/desorption d Mgd Mad -
Between Adsorbed Molecules a - Maa -
Between Adsorbed Molecules and Radicals c - Mac Msc

Between Radicals s - - Mss
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The stoichiometry matrix is then a composition of reaction-type submatrices, as follows in (1.2).
"
ċg
ċa
ċs

#
=

"
Mgg Mgd 0 0 0
0 Mad Maa Mac 0
0 0 0 Msc Mss

#
r(c, ✓) (1.2)

Complex reaction paths with multiple reacting surface intermediates may yield matrices of type gdacs, encompassing
all possible reaction types. These networks may be seen under circumstances where alternate reaction pathways are
possible depending on operating conditions, or when multiple possible pathways are being simultaneously considered
in the solution of an inverse kinetics problem. Hence, multiple potential mechanisms may be regarded as feasible, and
their parameters estimated together for the elucidation of the prevailing pathways.

g d a c s

A -1 -1 0 0 0 0 0 0 0
B -1 0 -1 0 0 0 0 0 0
C 1 0 0 -1 0 0 0 0 0
A* 0 1 0 0 -1 -1 0 0 0
B* 0 0 1 0 -1 0 -1 0 0
C* 0 0 0 1 1 0 0 1 0
D* 0 0 0 0 0 2 0 0 -1
E* 0 0 0 0 0 0 2 -1 -1
F* 0 0 0 0 0 0 0 -1 1
* 0 -1 -1 -1 1 -1 -1 1 1

Reactions Types
(reverse reactions suppresed)

ċg

ċa

St
at

e 
T

yp
es

ċs

ad

gd

sd

aa ac

ss

gg

sa sc
s D* + E* → F* + *

A + B → Cg

d

A + * → A*

B + * → B*

C + * → C*

a A* + B* → C* + *

c

A* + * → 2D*

B* + * → 2E*

E* + F* → C* + *

Homogeneous Reaction

Gas ad/desorption
Surface-gas coupling

Reaction Between 
Adsorbed Molecules

Reaction Between 
Adsorbed Molecules and
Intermediate Species

Reaction Between
Intermediate Species

Figure 1: Complex Reaction Network Stoichiometry Matrix Example. A reaction-type is classified according to the
columns of the stoichiometry matrix it encompasses.

For instance, combining the g, da and dcs reaction types listed above yields the matrix in Fig. 1 (inverse reactions are
suppressed). The gdacs reaction network thus represents the maximum variety and depth in complexity, involving all
types of species, either directly measurable through analytical methods or mathematically inferred from underlying
material balances. This framework allows for the classification of types of elementary reactions based solely on the
chemical reaction stoichiometry matrix. In section 3, we build anecdotal examples of reaction network subtypes to
guide the discussion on the need for operando analyses for the data-driven estimation of kinetic parameters, and serve
as scaffolds for the construction of chemical kinetics PINNs.

2.1.2 Reaction Network Examples

Reaction Network Type g: In the simplest homogeneous case conveyed in g.1, species A and B reversibly react to
form C in gas phase or in solution. To simplify the problem solution, the rate constants k are considered state- and
spatially-independent, which implies an isothermal concentrated-parameter closed system. Various chemical reactions
can be represented in terms of g.1, such as dissociation, dimerization, and lumped-kinetics surrogates derived from
complex kinetics data. A simple lumped-kinetics that could be represented as in g.1 would be ethylene dimerization to
1-butene, where A and B would represent ethylene, C2H4 and C would denote 1-butene, C4H8.

A+B
kg
1⌦

kg
-1

C (g.1)

Reaction Network Type da: For the da example, we transpose the reactive step from the homogeneous phase in
Eq. (g.1) to the heterogeneous phase. by including the adsorption and desorption elementary steps, d.(1-3). and a
surface reaction between adsorbed molecules, Eq. (a.1). The set of elementary reactions may be a simple representation
of catalyzed dimerization reaction, in the same spirit of Eq. (g.1), except that the reaction occurs in a single step on a
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catalyst surface.

A+ ⇤
kd
1⌦

kd
-1

A⇤ (d.1)

B + ⇤
kd
2⌦

kd
-2

B⇤ (d.2)

C + ⇤
kd
3⌦

kd
-3

C⇤ (d.3)

A ⇤+B⇤
ka
1⌦

ka
-1

C⇤ (a.1)

Reaction Network Type dc: The a-type reaction is replaced by two d-type reactions, i.e. reaction involving one
intermediate species (D⇤), which does not have a corresponding gas phase species. The d-type adsorption and desorption
steps, d.(1-3), are suppressed, i.e. implicitly included in the set of elementary reactions comprising the dc-example
below. An example of a reaction that could be represented overall in such terms would be ethylene epoxidation, where
A would represent ethylene, B molecular oxygen, O2, D atomic oxygen, O, and C would represent ethylene epoxide.

B ⇤+⇤
kc
1⌦

kc
-1

2D⇤ (c.1)

A ⇤ +D⇤
kc
2⌦

kc
-2

C ⇤ + ⇤ (c.2)

Reaction Network Type dcs: Elementary reactions between surface intermediates exclusively are embodied by s-type
reactions. In the following example, D⇤, E⇤ and F⇤ are reaction intermediates with no stable desorbed counterpart. In
terms of heterogeneous kinetics complexity depth, s-type reactions entail intermediates that cannot be directly measured
or inferred from ordinary gas/liquid phase effluent/heads-space analytical chemistry techniques, such as gas/liquid
chromatography and mass spectroscopy. Butene cracking followed by hydrogenation to ethane could be represented by
such a reaction mechanism, where A would entail butene, D ethylene, B molecular hydrogen, H2, E atomic hydrogen,
H, F is the ethyl intermediate, and C ethane.

A ⇤+⇤
kc
3⌦

kc
-3

2D⇤ (c.3)

B ⇤+⇤
kc
4⌦

kc
-4

2E⇤ (c.4)

D ⇤ + E⇤
ks
1⌦

ks
-1

F ⇤ + ⇤ (s.1)

F ⇤ + E⇤
kc
5⌦

kc
-5

C ⇤ + ⇤ (c.5)

2.2 Physics-Informed Neural Networks as Surrogate Approximators

The universal approximation theorem confers to feed-forward (FF) non-polynomial NNs the ability to approximate any
continuous function given an appropriate number of neurons [76, 80, 78, 79]. The FFNN structures have proven to
serve as appropriate basis functions for ODEs, which may also be extended to PDEs [81, 82, 66]. FFNNs can hence
be used to approximate ODE initial value problems associated with chemical kinetics. We further show their use in a
collocation framework to solve properly scaled inverse problems, under suitable choice of activation function and NN
architecture necessary for the solution (integration) of stiff kinetic ODEs.

Let !s = {Wj |Wj 2 Rnj⇥mj , j 2 {1, 2, ..., nl + 1}} denote a parameter tensor for an nl-layer feed-forward
neural network (FFNN). Let x 2 Rn be a state vector and t 2 Rp be collocation points, and �k(·) : Rm ! Rm be
the activation function associated with layer j. The input-output structure for the FFNN can be represented by the
recurrence relation in (2.1).

yj =
�
�j

�
Wjyj�1

� �� j 2 {1, 2, ..., nl}, y0 = t
 

x(t,!s) = ynl+1 = Wnl+1ynl

(2.1)
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We refer to the general use of neural-networks methods as surrogate approximators to solve kinetic ODEs as KINNs,
kinetics-informed neural networks, using PINNs as a scaffold with suitable modifications to enforce structural initial
conditions (ICs) or other phenomenological constraints associated with the kinetics of heterogeneous catalytic systems.
The general first-order non-homogeneous coupled ODE implicit representation of an MKM in terms of the KINN is
shown in (2.2), which can be generalized to pth order if x is of class Cp with respect to t.

g[t,x, ẋ] = g(t,x(t,!s), ẋ(t,!s)) = g(t,!s) = 0 (2.2)
Where x is the output of the SA encompassing one or more NNs and suitable output transformation layer, and ẋ is
evaluated through AD of the former with respect to the single-input input layer. The degrees of freedom in the algebraic
equation are all contained in the SA parameters, !s, which therefore determines the solution of (2.2) given proper ICs.
The time derivative of the SA, ẋ, is evaluated with respect to the single-input input layer through AD coupled with
just-in-time (JIT) compilation through the JAX library [83, 84].The objective function of the neural network is trained
with the Adam optimization algorithm. The MKM implicit ODE can be represented in terms of (2.2) as shown in (2.3).

"ẋi = g(ti,!s) = ẋ(ti,!s)�M (k(✓) �⇧(x(ti,!s))) (2.3)
The implicit form, g, and its short-hand "ẋi are indiscriminately utilized in the following sections to denote residuals of
the SA-based formulation to be minimized over collocation point in integration domains. In addition, fitting residuals
associated with a particular data-point i are denoted by "xi as follows in Eq. (2.4), where x̃i are measured state values
at ti.

"xi(!s) = x(ti,!s)� x̃i (2.4)
In the discussions that follow in the context of the utilization of FFNN as basis for the solution, or integration, of kinetic
ODE, we generally denote by x, the outputs of the FFNN that approximate the ground-truth solution of the related
ODE. Although other state variables, such as temperature and pressure, could in principle also be represented in x, for
the isothermal-isobaric cases considered here

x ⇡ c.

2.2.1 Structural Boundary Conditions

Structural Dirichlet ICs are implemented by designing operators that impose certain behavior onto the NN in regions
or points in the integration domain. In general, an operator CD

bc[·] must be devised to enforce Dirichlet-type initial
conditions, i.e. x(!s, t0) = x0 8 !s. A natural choice to satisfy a Dirichlet IC is the hyperbolic tangent function
�(t) = tanh(t) 2 C1, such that tanh(0) = 0 and @t tanh(0) = 1. Here  2 R+ is a characteristic time constant
that must be determined for each chemical system or also modelled in terms of independent variables, as shown in
section 2.2.2. Here we utilize x̂ and x[x̂] as the NN and SA outputs, respectively, with parameters !s and independent
variable t . The IC operator is defined as CD

bc[x̂(!s, t),x0] = x̂(!s, t)�((t� t0)) + x0 (1� �((t� t0))).

From simple inspection, the IC is universally enforced in (2.5) and gradients are a function of SA parameters in (2.6).
x̂(!s, t)�((t� t0))|t=t0 + x0 (1� �((t� t0))) |t=t0 = x̂(!s, t0)�(0) + x0 (1� �(0)) = x0 (2.5)

@t x̂(!s, t)�((t� t0))|t=t0 + @t x0 (1� �((t� t0))) |t=t0 =

˙̂x(!s, t0)�(0) + x(!s, t0)@t�̇(0)� x0@t�̇(0) (2.6)
= x̂(!s, t0)� x0

Such that the SA vanishes at t = t0, (2.5), with the continuous time-derivative of x equal to the NN output, x̂, (2.6).
Therefore, any Dirichlet IC can be automatically satisfied in this form for KINNs. The same approach can be extended
to Neumann ICs with proper choice of � function. The application of the operator CD

bc on MKMs follows naturally by
making x⇡ c in (1.1) as depicted by (2.3).

2.2.2 Characteristic Time

In the case of tanh as choice of � for CD
ic , a proper choice for characteristic time constant can be circumvented by

replacing  by an ancillary shallow NN that can be learned along with the underlying SA NNs, with a monotonically
increasing output layer. In this work we adopted an exponential form for  whenever solving the forward ODEs, as in
(2.7).

 = eu(!t,t�t0) (2.7)
Where u is a shallow FFNN with parameters !t. The IC operator on � and , CD

ic , can thus be represented in terms
of � and u as follows in (2.8), where parameter dependencies were suppressed. For the sake of simplicity, we further
assume  is embedded into the SA structure x so its weights, !t, are included in !s.

CD
bc[x̂(t),x0] = x̂(t) tanh

⇣
eu(t�t0)(t� t0)

⌘
+ x0

⇣
1� tanh

⇣
eu(t�t0)(t� t0)

⌘⌘
(2.8)
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2.2.3 Normalization DAE Constraints

MKMs typically treat the concentration of adsorbed and intermediate species in terms of fractions of the total number
of available active sites. It is hence desirable for SAs to structurally enforce normalization, eliminating a degree of
freedom. We propose the projection of radius-one hypersphere onto the natural basis to enforce inherent normalization.
Let x(!s, t) 2 Rk be the output values of the constrained surrogate related to the neural network x̂(!s, t) 2 Rk�1,
such that

xi(!s, t) =
�
1� sin2 (x̂i(!s, t))

�Y

j<i

sin2 (x̂j(!s, t)) 8 i < p; i, j 2 N

xp(!s, t) =
Y

j<p

sin2 (x̂j(!s, t))
(2.9)

Such a trigonometric transformation enforces bounds to x, such that 0  x  1 and
P

x = 1 8 x̂ 2 Rp�1. The
SA output can hence be denoted as the result of the normalization-constraint operator CN over the NN output x̂, i.e.
x = CN[x̂]. The normalization-constraint operator implicitly embeds DAE constraints to the ODE solutions, since it
encodes

P
ẋ = 0 for species coverage.

2.3 KINN Forward Problem

The surrogate approach to solving the forward problem involves training the neural network to satisfy the ICs, as
well as the differential form specifying the reaction kinetics in (2.2), over a defined time grid. We constrain the
analysis to non-spatially dependent closed systems, formulating the problem for an ideal, uniform (perfectly stirred),
pseudohomogeneous batch reactor model, where the underlying ODE describing the state-variables evolution over time
is analogous to (1.1). The approach would also hold for the steady-state solution over space of fixed or packed-bed
reactors. The general solution for the forward problem, i.e. solving the ODE, consists of minimizing the implicit form
in (2.2) given consistent ICs for the states, where the real-valued function g corresponds to (1.1) in standard form
given fixed model parameters, p, which is outlined by (2.3). The initial value is represented by x0, and the residual is
evaluated over the collocation points, t, as shown in (3.1). This represents the minimization of the residual jm, under
some L2-norm, between the Jacobians of the states from the derivative-based rate laws and the surrogate approximator.
AD provides the Jacobians, i.e. ẋ and @!s jm(t,!s), for the objective function. The Adam optimization algorithm is
used to minimize the residual, jm.

min
!s

jm(!s) = ||g(t,!s)||22

=
1

n

nX

i

"Tẋi
"ẋi

s.t. x(t0,!s) = x0

(3.1)

Importantly, in the case of MKMs for which surface coverage fractions are in play, the normalization of elements
of g can be structurally enforced as shown in 2.2.3, by having g(x(x̂)) as in (2.9), which imposes a DAE constraint.
Furthermore, when dealing with mixed normalized (coverage) and non-normalized (bulk-phase) chemical species, the
problem can be split into two separate underlying NNs which are concatenated in the SA output layer: a non-normalized
one representing the mapping between time and gas-phase concentrations and a normalized one mapping between time
and surface coverages. The implicit representation of MKM KINN is given in (2.3). When structural ICs are applied
and normalization constraints are included, the surrogate model consists of the following combinations of underlying
NNs and operators, (3.2), using the same nomenclature as defined in 2.1.

x = CD
ic


x̂g

CN[x̂as]

�
(3.2)

Where x̂g corresponds to the output layer of the NN associated with gas (unbound) species and x̂as encompasses
the output layer of subjacent NN that conveys the p� 1 angular components that, once mapped through the operator
CN, outputs p normalized coverage fractions. Finally, the initial-value IC operator CD

ic is applied onto the combined
(concatenated) NNs.

2.4 KINN Inverse Problem

Under the same model assumptions of the forward MKM problem, we extend the PINN-based KINN approach to
MKM inverse ODE problems by letting x̃ 2 Rn⇥d

+ represent observed (measured) concentrations of n chemical species
over the respective d time-points t 2 Rd

+, and including it in the objective function. As in the forward problem,

8
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Algorithm 1 Forward KINN
1: Input: Boundary conditions (t0,x0), p, maximum iterations nmax, tolerance tol
2: Initialize NN, SA parameters !s, residual jm(!s)
3: while iter < M or jm(!s) < tol do

4: Predict states x from SA over t
5: Predict states derivatives ẋ from SA over t
6: Compute objective function jm(!s) over t
7: Compute gradients of jm(!s) with AD; @!sjm(!s)
8: Update SA parameters !s using Adam
9: Output: Concentration profile x(t,!s)

state variables are represented by surrogates from separate NNs and applied operators, as in (3.2), i.e. x(t,!s). The
inverse problem consists of the forward KINN model with the inclusion of interpolation of observed datapoints, x̃
as a regularization term in the objective function. In the regularized setup, the error to be minimized consists of the
combination of the residual between the SA and the observed data (interpolation), jd, and that between SA and the
kinetic model describing the behavior (physics regularization), jm, in a least-squares sense, similarly to the approach by
Raissi et al. [67]. As in the forward problem, the combined error is minimized using the Adam optimization algorithm.

jd(!s) =
1

n

nX

i

"Txi
"xi

jm(!s,p) =
1

n

nX

i

"Tẋi
"ẋi

Finally, let ! = {!s, p} combine the residual from the forward-KINN as regularization hyperparameter with weight ↵
into the inverse ODE.

min
!

jt(!) = jm(!s,p) + ↵jd(!s)

s.t. p 2 Rdim(p), !s 2 Rdim(!s);↵ 2 R+

(4.1)

The regularization hyperparameter ↵ conveys the ratio between the variances of the data (states) and model (state
derivatives) under the hypothesis of homoscedasticity, and it needs to be optimized given an MKM postulate and the
observed data. Furthermore, the regularization intensity plays a decisive role in the case of noisy data, since initial
training steps with excessive regularization potentially lead to local convergence far from the global optimum in the
model parameter space. A conservative strategy implemented in this work is to perform initial training steps at low
values of ↵ and then proceed with increments in ↵ until an inflection point between log(jd) and log(jm) is observed.
In section 3.2, a sensitivity analysis is performed over ↵ values for an anecdotal inverse problem. Also, the learning
of model parameters must take place in a similar domain and scale as the SA-associated NN weights. As kinetic
parameters have non-negative values and may substantially vary in order of magnitude, we choose to train an exponential
mapping, i.e., set k = exp(p). Furthermore, for the tanh activation function, a saturation occurs at arguments of
±5, and for swish with a similar pattern as exp, such that p and !s are of the same order of magnitude. This allows
that they be grouped as a lumped variable and trained simultaneously as described in the following pseudo-algorithm.
Different non-stiff anecdotal kinetic models are solved in the forward sense to justify the use of FFNNs as bases for the

Algorithm 2 Regularized Inverse KINN
Input: Observed data (t, x̃), maximum iterations nmax, tolerance tol

2: Build NN and initialize SA parameters !s, and kinetic model parameters p
while iter < nmax or jt(!) < tol do

4: Predict states x(t,!s) from SA over t
Predict states derivatives ẋ(t,!s) from SA over t

6: Compute objective function jt(!) over t
Compute gradients of jt(!) with AD; @!jt(!s,p)

8: Update SA parameters !s and kinetic model parameters p using Adam
Output: Kinetic model parameters p

solution of the inverse problem. We increase reaction network complexity, moving through (i) an example of a simple
homogeneous case (type g), (ii) an example involving reaction between adsorbed molecular species (type da), (iii) an
example including reactions between adsorbed molecules and reaction intermediates (type dc) and (iv) an example
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including a reaction between intermediates (type dcs). Abstract species are used in the following examples, which may
suit a myriad of actual chemical reactions.

2.5 Synthetic Data Generation

The scheme for solving the forward KINNs problem, and the inverse problem in three different scenarios, is shown in
Fig. 2. The scenarios, which vary in the completeness of knowledge about the chemical systems and the presence of
noise representing actual measurements, as listed below.

• Quantitative Unbound Species (Q): no information about chemical intermediates and adsorbed molecules;
the only measured states are related to unbound chemical species; e.g. gas, liquid species that can be measured
downstream (flow-type reactors) or sampled from the reactor headspace (batch) with standard analytical
equipment: gas/liquid chromatography, mass spectroscopy. For the Q scenarios, only data generated for the
observable variables ie. unbound chemical species are fed to the training loop, such that jd, or "x, has the
length of the observable variables. Meanwhile, jm, or "ẋ, in (4.1), encompasses derivatives for all present (or
assumed present) chemical species and intermediates that are measured and unmeasured.

• Q + Semiquantitative Bound Species (SQ): it is assumed that resolved SQ data can be obtained, e.g. with
operando analytical techniques, for all adsorbed molecules and stable reaction intermediates, and that the
SQs are linearly related to the concentration of such species. For the SQ scenario, the surface coverages
generated from the numerical solution of the forward problem are rescaled by dividing the time series values
by their standard deviation (an effectively arbitrary number that mimics a calibration factor in spectroscopy).
In the inverse KINNs problem, the scaling factors between fractional coverages and the SQ intensities are also
included as parameters to be learned in !s.

• SQ + noise (SQ+n): a normally distributed homoscedastic error (white noise) with an arbitrary standard
deviation of 0.025 is added to the scaled data for the SQ scenarios. This setup intends to represent a more
realistic scenario that evaluates the robustness of the physics regularized setup in the presence of noise.

To obtain the ground truth set for the comparison of the forward KINN results, the ensuing ODEs of all combinations of
MKMs and ICs were solved numerically with the stiff-nonstiff algorithm LSODA from the FORTRAN ODEPACK [85,
86]. Similarly, the generation of abstract observed data and further per-scenario processing was carried out using the
same numerical method, as shown in Fig. 2 (A). For the solution of forward KINNs, the MKM stoichiometry matrix, the
kinetic parameters, p, and ICs is provided, Fig. 2 (D). Conversely, for the inverse problem, p is adjusted and synthetic
data is generated and provided as if experimentally assessed, Fig. 2 (B). The KINN SA-based solution flow diagram is
portrayed in Fig. 2 (C), exhibiting the interplay between the SA and the physical models, and the final cost function, jm.

Table 2: Rate Constants and NN architecture

Rate Constants Architecture (layers)

Type kg
1

kg
-1

kd
1

kd
-1

kd
2

kd
-2

kd
3

kd
-3

ka
1

ka
-1

kc
1

kc
-1

kc
2

kc
-2

kc
3

kc
-3

kc
4

kc
-4

kc
5

kc
-5

ks
1

ks
-1

Hidden
[tanh,swish,tanh]

Output
[linear,CN[·]]

g 10
1 - - - - - - - - - - [5, 5, 5] [3,-]

da - 10
4

40
60

200
40

100
80 - - - - - - [12, 12, 12] [3,4]

dc - 20
8

16
4

12
8 - 1200

400
2000
1600 - - - - [16, 16, 16] [3,5]

dcs - 20
8

24
12

16
40 - - - 640

960
160
80

560
160

640
240 [20, 20, 20] [3,7]

The cost function to be minimized for learning the solution of the ODEs using KINNs was defined in terms of mean-
square error, MSE. The JAX library was utilized for the forward AD, allowing the obtainment of the gradients with
respect to the SAs’ parameters, which were optimized with the Adam algorithm [87]. Since ICs are structurally enforced
by CD

ic , the ODE solutions are found by minimizing jd, i.e. finding !s such that the state derivatives from the physical
model given SA state estimates, x, match those estimated by forward AD of the SAs with respect to their single value
time input. All code necessary for reproducing the results of this work are provided in the Supplementary Material and
via GitHub (https://github.com/gusmaogabriels/kinn/tree/paper_reg).
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Figure 2: Data generation (A) from stiff-nonstiff algorithm LSODA for three case studies: quantitative data for gas
phase only (Q), quantitative gas phase and scaled semiquantitative coverage fraction without (SQ) and with added noise
(SQ+n). Forward (D, KINN block) and inverse (B) KINNs scheme. KINN block (C) and kinetic model structure and
inputs (D).

3 Results and Discussions

3.1 Forward KINNs

Three-hidden-layer NNs with tanh, swish and tanh activation functions respectively were utilized as basis for the
solution of forward KINNs. For the overall reversible reaction A ⌦ B + C represented by each reaction network
type, several anecdotal examples for the forward problem were solved given a set of diverse Dirichlet ICs in terms of
xA, xB and xC at t = 0, and sets of rate constants chosen to portray different degrees of stiffness, i.e. faster rates for
surface reactions, as in Table 2. For all reaction types, hyperbolic tangent Dirichlet-type boundary-condition operators,
CD

ic , were applied to SAs, as in section 2.2.1. Ancillary single-hidden-layer FFNNs with three (a- and da-type) or six
(dc and dcs-type) neurons and swish activation functions were trained in parallel for each forward problem to allow
for a time-dependent characteristic time or gain for the IC operator, which provides a learning gain-layer in the case
of varying stiffness, as defined in section 2.2.2. The forward KINNs are defined in terms of their associated reaction
network (stoichiometry matrix), ICs and kinetic parameters. Normalization constraints are not included in the forward
KINNs since they bring additional non-linearity that is unnecessary given that the problems are well-defined by their
ODEs and ICs.

Table 3 allows the comparison of the numerical results with the SA derived for the forward KINNs. The set of ICs
was defined so as to represent the two scenarios: one in which there are similar concentrations of both reactants, (IC 1,
{xA, xB , xC , x⇤}t0 = {0.6, 0.4, 0.0, 1.0}), and another to represent the case where considerable amount of product
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Figure 3: Reaction network type dcs forward solution with IC of {xA, xB}t0 = {0.6, 0.4} and clean surface (IC 1).
States solution (top) (SA, open circles; numerical solution, closed markers) under minimization of (3.1) (bottom) for
observable variables (unbound species, top) and latent variables (coverages, bottom).

is present, (IC 2, {xA, xB , xC , x⇤}t0 = {0.2, 0.3, 0.5, 1.0}). The two conditions were chosen to represent chemical
transformations that predominantly run in the forward or reverse reaction, and thus inform further attempts to solve
the related inverse problems. The performance metrics are defined as a function of the collocation points about which
the SA is trained, which is exemplified in Fig. 3 by the dcs-reaction network type solution for IC 1. For all scenarios,
about 100 collocation points were sampled in a logarithm space in the time domain, such that there is higher probability
that points be placed in regions of higher derivatives near the IC. To refine the solutions, SAs were trained in three
stages with varying training step size from 10�4 to 10�6, over a total of 103 epochs, and 102 iterations per epoch.
The convergence criteria was that either jt < 10�12 or that the maximum number of epochs was reached. Evidently,
absolute error metrics such as MAE and MSE cannot be compared between different MKMs and ICs, since different
ODEs may exhibit different stiffness and therefore larger or smaller derivative values in different scales as compared
to actual state values. Irrespective of MKM and ICs, the coefficient of determination (r2) for all examples is unity
(within round-off error). Such results support the hypothesis that NNs can be utilized as general bases for the solution
of forward KINNs, which is the underpinning assumption for their utilization in the solution of inverse KINNs.

In Fig. 3, the final solution for the type-dcs MKM under the reactant-only IC (IC 1) is shown. The predicted states
(open circles) line up over the numerical solution (solid circles) for both the observable concentrations xg (top) and
coverage fractions xas (bottom). The minimization of the underlying forward KINNs cost function jm can be inferred
by the parity plot between physical (kinetic) model derivatives from estimated states, and their derivative estimates
from forward AD. For the remaining cases, the standardized derivative parity plots for the observed and latent states
can be compared with the coefficient of determination reported in Table 3, for which coefficients of determinations are
computed as the average squared correlation coefficient over different states.

3.2 Inverse KINNs

The forward numerical solution data for the different reaction network types were utilized as the ground truth data
for the inverse KINN studies. We define three scenarios or categories for the inverse KINNs involving heterogeneous
models, i.e. reaction networks other than type-g only, as portrayed by scheme (A) in Fig. 2. Unlike the forward KINNs,
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Table 3: Forward KINNs Results Summary - Performance Metrics (vs Ground Truth)

Observed States Derivatives Latent States Derivatives
Type IC r2 MAE MSE r2 MAE MSE

g 1 1.00 5.50 × 10�4 3.92 × 10�7 - - -
2 1.00 1.79 × 10�5 4.27 × 10�10 - - -

da 1 1.00 2.51 × 10�3 1.12 × 10�5 1.00 2.97 × 10�3 1.84 × 10�5

2 1.00 8.93 × 10�3 2.49 × 10�4 1.00 1.73 × 10�2 1.32 × 10�3

dc 1 1.00 3.30 × 10�3 2.09 × 10�5 0.999 1.26 × 10�2 4.70 × 10�4

2 1.00 2.78 × 10�3 1.68 × 10�5 1.00 7.38 × 10�3 1.42 × 10�4

dcs 1 1.00 2.18 × 10�3 9.87 × 10�6 1.00 7.13 × 10�3 4.00 × 10�4

2 1.00 6.89 × 10�4 8.45 × 10�7 1.00 3.33 × 10�3 3.58 × 10�5

whose solutions for the two ICs are independent of each other, the inverse KINNs are interdependent since they share,
and thus act on, the same kinetic model and its kinetic parameters encoded in p. The solution of inverse KINNs can
involve multiple experimental (observed) data to which independent SAs are trained under a single underlying physical
model. In this section, all inverse KINN estimated model parameters were obtained by the simultaneous interpolation
of IC 1 and 2 data from the numerical solution of the MKM ODEs.

We start by analyzing the SQ and SQ+n scenarios, since these scenarios contain the most information about the system.
The normalization constraint operator, CN, plays a major role in the learning of scaling factors for the SQ scenarios,
since it constrains the scaling factors to describe normalized (fractional) coverages, and indirectly imposes a DAE
constraint to ODE solution. Importantly, the regularization parameter, ↵, (4.1) must be determined for each specific
reaction network type and associated data (as in any method where hyperparameters need be optimized). The optimal ↵
range can be inferred by simultaneously minimizing the residual terms with respect to data, jd, and to the physical
model, jm. Since this involves a trade-off between the two parts of the objective function, there will be a Pareto frontier
of optimal models as a function of ↵. We utilized sensitivity analyses on the residual terms for the anecdotal dcs-type
reaction network scenarios to estimate their Pareto frontiers. We successively increased ↵ from 10�6 to 106 and further
decreased it back to 10�6 to assess the non-dominated points (i.e. Pareto-optimal set of points with optimal trade-off
between the two objectives) in the estimated Pareto sets for the SQ and SQ+n scenarios. For each value of ↵, the same
SA learning strategy in terms of convergence criteria, number of epochs, iteration per epoch and solution refinement as
defined in section 3.1 was adopted.

Fig. 4 (B) shows the learned Pareto sets as ↵ is increased (tightened) with open markers from left to right. The
SA begins by learning the underlying ODE structure (low ↵, low jm, high jd). As ↵ increases, jd monotonically
decreases with a corresponding increase in jm, resulting in a forward concave set with an inflection point for jm
around log(jm) ⇡ �4 (open markers) for both the SQ (black) and SQ+n (red) scenarios. In Fig. 4 (A), the steepest
improvement in the correlation between the ground-truth and learned model parameter is located in the same region of
the concave tightening-Pareto inflection point ↵. When relaxing ↵ with the same SAs trained in the tightening direction,
the Pareto set becomes convex, Fig. 4 (A), as expected for a multiobjective minimization problem between two cost
functions. This tightening-relaxation strategy and the observed Pareto-set behavior allow the proper estimation of ↵
values in the Pareto set that provide an equilibrated trade-off between satisfying the MKM ODE and interpolating
the observed data. Specifically, in the case of SQ+n, further tightening ↵ beyond the inflection point leads to little
improvement (plateau in the red curve, Fig. 4 B) in the inverse problem solution, instead further fitting the SA to data
noise (overfitting). This can be inferred from the trend in the correlation between learned and ground truth model
parameters in Fig. 4 (A), which reaches a stable value for the same range of ↵ where the plateau is observed in Fig. 4 (B)
over successive tightening learning steps. Additionally, if ↵ is further increased, a second inflection point is expected,
where there is a detachment of the SA from the underlying MKM ODE and a steep reduction in jd due to overfitting. In
the case of SQ, the basis slack region in (B) portrays the inability of the specific choice of SA architecture (i.e. number
of layers, activation function) to satisfy both the MKM ODE (physical model) and interpolate the ground-truth data.
Such an argument is supported by the universal approximation theorem [77], which states that, with a sufficient number
of neurons, states and their associate derivatives can be approximated to arbitrary accuracy. Nevertheless, it ensues from
the universal approximation theorem that there should exist pathological scenarios for sufficiently large or deep NNs
where exact interpolation of datapoints is obtained, while excess degrees of freedom allows steep kinks to be created
about the interpolated points. In such a scenario, derivatives can span a wider range of possible kinetic parameters that
would still satisfy the underlying physics constraints. We opted for constructing NNs that are sufficiently large to adhere
to the observed data, but not too large to enable multiple degenerate physical solutions. Fig. 4 also illustrates, in (C),
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Figure 4: Inverse KINN - Regularization Sensitivity Analysis: Pareto Set Estimate. Regression correlation coefficient
between fitted and actual kinetic parameters (A), where training (tightening, open markers) starts at the lower left
corner at low data regularization (↵), increasing from left to right as a function of model error jm. The relaxation
series succeeds from right to left (closed markers), where model parameters exhibit minor improvement; however data
(jd) and model- (jm) error evolution as a function of ↵ define the Pareto frontier in (B) from which non-dominated
(efficient) solutions can be obtained. Optimal parameters for scenarios SQ (red) and SQ+n (black) are shown in (C) at
the open and closed inflection points in (B). The basis slack region in (B) conveys the inherent constraint imposed by
the choice of simple NN architecture to the derivatives (model) space, which translates into a compromise between
interpolation and satisfying the physical model as ↵ is relaxed.

that the learned physical model parameters at the relaxation inflection point are highly correlated with the ground-truth
parameters irrespective of noise.

In all models in this work, the tightening steps started with ↵ = 10�6, with 10-fold ↵ increment between each training
cycle, and the relaxation steps reduce ↵ by the finer increments, with the model at the inflection point in relaxation taken
as the optimal model. Table S1 in the Supplementary Material compiles the performance metrics for the observable
variables states and their derivatives for the four different reaction network types, two ICs and three inverse scenarios.
Accurate matches between observed states within noise limits and highly correlated derivatives are observed for all
cases. In terms of latent variables, the performance metrics in Table 4 show the agreement between simulated and
fitted latent states and their derivatives, irrespective of reaction network type, for scenarios SQ and SQ+n . As for
the Q scenarios, even with lack of direct knowledge on surface coverages, the surface dynamics information can be
indirectly retrieved for model da. Hence, the latent (bound) state profile can be inferred from unbound data only. With
the increase in depth, the correlation between predicted states starts to fade. This occurs because adsorbed species (type
c and s) coverages are not directly measured in the Q scenario, thus there exist multiple solutions for the combination
of their evolution over time and the kinetic parameters associated with their reactions. The temporal profiles for the
final solutions for observed and latent states as well as their derivative (SA vs. physics model) are reported in the
Supplementary Material, Figs. S2.1 to S2.6, S3.1 to S3.6 and S4.1 to S4.6.

To showcase the robustness of SA-based inverse KINNs, we consider the final refined solution profiles for the
SQ+n scenario for the dcs-type reaction network with IC 1 in Fig. 5. In the SQ+n scenarios, not only are kinetic
parameters learned, but also the scaling factor that connects intermediate species abundance as a signal or intensity
to fractional coverages. For the optimized regularization, which is dependent on the ↵ value, the underlying SA
interpolation suppresses the effect of the added homoscedastic noise. Larger ↵ values would lead to predicted points
(interpolation, open markers) moving further towards the measured data (closed circle markers), resulting in SA
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Table 4: Inverse KINNs Results Summary for reaction types da, dc and dcs - latent states (vs. ground truth, right) and
derivatives (physical model, left) error metrics.

Latent States Derivatives Latent States (ground truth)
Type IC Mode r2 MAE MSE r2 MAE MSE

da 1 Q 1.00 9.59 × 10�3 2.99 × 10�4 0.972 3.17 × 10�2 1.40 × 10�3

SQ 0.944 0.131 0.325 0.999 1.09 × 10�3 2.30 × 10�6

SQ+n 0.941 7.62 × 10�2 1.90 × 10�2 0.863 1.56 × 10�2 4.79 × 10�4

2 Q 1.00 7.59 × 10�3 1.69 × 10�4 0.998 3.48 × 10�2 1.69 × 10�3

SQ 0.998 7.82 × 10�2 4.47 × 10�2 1.00 1.26 × 10�3 2.23 × 10�6

SQ+n 1.00 4.47 × 10�2 3.37 × 10�3 0.948 1.79 × 10�2 4.15 × 10�4

dc 1 Q 1.00 1.91 × 10�2 5.92 × 10�4 0.965 0.118 2.32 × 10�2

SQ 0.999 2.63 × 10�2 3.50 × 10�3 1.00 6.39 × 10�4 6.21 × 10�7

SQ+n 0.983 5.96 × 10�2 5.93 × 10�3 0.895 2.67 × 10�2 1.29 × 10�3

2 Q 0.996 1.04 × 10�2 1.54 × 10�4 0.940 0.151 3.68 × 10�2

SQ 1.00 1.13 × 10�2 4.60 × 10�4 1.00 6.64 × 10�4 6.96 × 10�7

SQ+n 0.988 4.08 × 10�2 3.70 × 10�3 0.988 3.24 × 10�2 2.05 × 10�3

dcs 1 Q 0.975 1.87 × 10�2 8.11 × 10�4 0.374 0.146 3.84 × 10�2

SQ 1.00 5.53 × 10�3 8.53 × 10�5 1.00 2.66 × 10�3 1.28 × 10�5

SQ+n 1.00 1.28 × 10�2 3.24 × 10�4 0.996 1.47 × 10�2 3.89 × 10�4

2 Q 0.736 1.81 × 10�2 9.85 × 10�4 0.236 0.181 5.76 × 10�2

SQ 1.00 9.30 × 10�3 2.51 × 10�4 1.00 2.68 × 10�3 1.30 × 10�5

SQ+n 0.998 2.11 × 10�2 1.44 × 10�3 0.989 1.06 × 10�2 1.45 × 10�4

overfitting with respect to data (i.e. the resulting curve would not satisfy the differential equations of the kinetic model).
In contrast to the forward KINNs, ICs are not explicitly provided, so all observed data act as a composite set of ICs
whose weight is conveyed by jd. As depicted by Eq. (4.1), the efficient solutions are given by Pareto-optimal (i.e.
non-dominated) points that minimize the multiobjective optimization function jt, involving jd and jm. The latter,
which represents the error in satisfying the MKM ODE, has similar structure as the one for forward KINNs except
that p becomes a variable for which to solve. In inverse KINNs, as the SA is trained to minimize Eq. (4.1), the
kinetic parameters are learned from the underlying physical model (MKM). For all studied cases, kinetic parameters, p,
were randomly uniformly initialized at scale of 10�2, whereas ground-truth values would range approximately from
0  ln(k0)  8, as can be inferred from the natural logarithm of the values presented in Table 2. The final refined
solution for the SQ+n scenario of dcs-type reaction network, with IC 1 and 2 solved (interpolated) in parallel is shown in
Fig. 6. These results are illustrative of cases in which knowledge on surface coverages over time, despite the presence of
noise, can provide a description of the system dynamics from which kinetic constants can be retrieved. This highlights
the importance of operando spectroscopic techniques, especially for complex reaction networks involving reactions
between adsorbed intermediates.

A summary of final refined regression results for all inverse KINNs scenarios is given by Table 5. All scenarios comprise
the simultaneous training of SA weights and the natural logarithm of the true kinetic model parameters for ICs 1 and 2.
For the purely homogeneous g reaction networks, kinetic parameters are easily retrieved with MAE below 10�3 for the
Q scenario (in the absence of noise). The inverse KINNs for reaction networks of types g, d and da may also be solved,
since they involve reactions between unbound species and corresponding bound molecules, but not reactions between
intermediate species, as can be seen from the results for reaction network types g and da. As for reaction networks that
include c and g-type reactions, the results support the need for surface composition information over time, as depicted
by the detached correlation coefficients and high MAE for type c reactions. In the availability of surface composition
information (i.e. signal, intensity), forward and reverse kinetic parameters can be regressed even for the highest-depth
reactions, those between surface intermediates (s-type). Notably, the framework presented allows for spectroscopic
information about any subset of species to be included, making it possible to quantitatively combine transient operando
spectroscopic data with transient kinetic data.
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Figure 5: Reaction network type dcs inverse solution. States solution (left) (KINN approximation, open circles;
SQ+ndata, closed markers) under minimization of (4.1) (right) for observable variables (unbound species, top) and
latent variables (coverages, bottom).

Figure 6: Reaction network type dcs, SQ+n, inverse solution. Natural logarithms of ground truth parameter ln (k0) vs.
regressed parameters, ln(k(p)) = p.
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Table 5: Inverse KINNs regression performance metrics summary for type g, da, dc and dcs reactions types and
scenarios Q, SQand SQ+n.

MAE - log(k0) total
Type Mode g d a c s ⇢

g Q 9.90 × 10�4 - - - - 1.00
Q+n 2.29 × 10�4 - - - - 1.00

da Q - 0.161 9.76 × 10�2 - - 0.991
SQ - 5.95 × 10�2 1.16 × 10�2 - - 0.999
SQ+n - 0.150 8.11 × 10�2 - - 0.999

dc Q - 0.520 - 1.80 × 101 - -0.523
SQ - 1.70 × 10�2 - 7.32 × 10�2 - 1.00
SQ+n - 0.236 - 0.420 - 0.996

dcs Q - 5.06 - 1.02 × 101 1.90 0.205
SQ - 4.10 × 10�2 - 0.116 6.61 × 10�2 0.999
SQ+n - 0.110 - 0.114 9.62 × 10�2 0.997

3.3 Discussion of Numerical Methods Aspects

As with any numerical technique, there are numerous factors to consider when setting up and solving problems with
KINNs. This section contains a brief discussion of each of these factors, the choices used in this work, and the possibility
of other options.

Architecture Three-layer NNs have proven satisfactorily flexible to accommodate the different dynamics between the
latent and observable variable domains in the inverse and forward problems in this study. Deeper NNs appear to be
particularly important when trigonometric ICs, which encompass DAE constraints, are enforced onto the output of the
latent variables in inverse KINNs. Larger or smaller optimized NN architectures and associated activation functions
could have produced similar or better results; however, NN architecture optimization is beyond the scope of this work.
For non-normalized non-stiff problems, a single swish hidden layer suffices to solve the MKM ODEs. For solutions that
exhibit stiff behavior in certain regions and flat response in others, the characteristic time can be modelled as a function
of the independent variable (e.g., time), which was implemented for all forward KINNs in this work in accordance with
the mathematical structure proposed section 2.2.2.

Training Given the high number of weights to be optimized from the SA and underlying NNs, and the possibility of
non-convexity especially in cases with large number of reaction intermediates (species of type s), we opt for the current
standard algorithm for deep NN training, Adam, which combines a stochastic gradient descent optimizer with adaptive
momentum. Although reliant on a noisy average estimation, SGD has been demonstrated to provide fast convergence
and associated parameters, even compared to more elaborate optimizers [88]. The RMSProp built onto SGD in Adam is
known to result in improved performance in on-line settings. Considering these properties and the literature-reported
success of Adam in NN settings [87], it was chosen as an optimizer in both forward and inverse settings.

Sampling & Regularization As regards the sampling procedure, other strategies could have been utilized instead of
sampling evenly spaced, fixed points in the logarithm space. Cross-validation routines in inverse KINN schemes could
prevent overfitting for ↵ values beyond the tightening inflection point in Fig. 4. Furthermore, pre-training the SA with
low ↵ is paramount, especially in the case of noisy data, since it allows the SA to first learn the MKM ODE, which is
further presented the observed data to which to interpolate. Such a procedure is also important when there are too few
observed data points and large NNs, to prevent the physical model parameters from rapidly squashing at the beginning
of training cycle and to avoid the issue of vanishing gradients. Proper scaling of the physical model parameters is
also beneficial to accelerate the learning procedure in our current inverse KINNs setup, since it provides the learning
(optimization) algorithm Adam with parameters of similar order of magnitude.

Inverse Problem In this work, we combine the optimization of the SA and kinetic model parameters into the NN
training algorithm. We suggest that the solution for this combined approach may serve as initial guess to accelerate the
solution of methods with mathematically rigorous formulations from the standpoint of optimization, such as the adjoint
state method [89] that enforces Karush-Kuhn-Tucker, KKT [90, 91] optimality conditions. Such methods may vastly
benefit from pre-optimized initial guesses, since their deterministic behavior, especially for the adjoint formulation,
often leads to local convergence when deterministic gradient-based optimization algorithms are utilized.
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MKMs & KINNs Analysis of the inverse solutions for the different reaction network types examples of varying
complexity or depth (section 2.1) highlights the need for operando techniques to allow for information related to species
of type c and s to be retrieved. The SQ and SQ+n pose similar scenarios with respect to operando techniques. Coverage
fraction time series obtained from the forward numerical solution of the initial value problems are rescaled with their
multiplication by a random positive scalar, emulating resolved spectroscopic signals. Inverse KINNs therefore entail
learning the kinetic parameters associated with the MKM as well as the scaling factor that maps signal intensities
to coverages of intermediate species, which is only possible due to the normalization operator that enforces DAE
constraints to the ODE solutions. Accurate parameter estimation for the complex dcs mechanism is supporting evidence
that inverse KINNs, seen as either physics-regularized interpolation of data or data-regularized SA-based solution of
ODEs, are a robust method for the estimation of kinetic model parameters.

4 Conclusion

In this work, we use artificial neural networks (NNs) as basis functions for microkinetic models (MKMs), proposing
strategies to create surrogate approximators (SAs) for the solution of the kinetic ODEs. We present a general classifica-
tion and notation for catalytic reaction networks based on reaction and species types and the phases of species involved.
This notation provides an immediate understanding of the extent or depth of dissociation between the observable or
measurable states and the underlying intermediates, and hence the complexity of attempting mechanism elucidation.
The suitability of NNs as basis functions for the solution of ordinary differential equations is demonstrated by their
ability to solve kinetic forward problems. Structural ICs are imposed on the underlying NNs to enforce ODE ICs
as in initial value problems. Furthermore, we also propose the inclusion of ancillary NNs to learn the characteristic
timescale of the ODEs, which is important in the case of stiffness about the IC. Normalization of the coverage fractions
of intermediates is enforced by separating bulk and surface species into two independent neural networks, which
structurally enforces a DAE-type of constraint to the ODE solution.

Using a lumped approach for the simultaneous training of NNs weights and kinetic model parameters in a multiobjective
optimization framework, we demonstrate the ability to utilize NNs as basis functions and NN training algorithms to
retrieve kinetic parameters from data generated for anecdotal MKM ODEs. The optimization problem is framed in
terms of a regularization parameter that can be used to guide the training cycles by (1) low regularization, allowing
the SAs to learn or adapt to the physical model ODE, slowly transitioning to (2) high regularization to force the SA
to interpolate observed data while parameters of the physical model are simultaneously learned. The regularization
parameters convey the relative variance between errors in the physical model (derivatives) space and those associated
with states (observed data). This framework can be utilized to estimate Pareto sets and establish associated stopping
criteria for training cycles.

Our SA-based approach for the solution of inverse problem was tested against different types of reaction networks. We
show that for homogeneous reactions, when the concentration of species over time are known, or for reactions involving
non-dissociated adsorbed chemical species, the approach can be utilized to readily retrieve parameters associated with
the underlying kinetic model. For more complex scenarios, where there is incomplete knowledge about concentration of
intermediate species on the surface of a catalyst, we assessed the possibility of using resolved operando spectroscopic
signals for the adsorbed species to extend regression capabilities. Scaling or calibration factors are included as variables
in the training process, and we show that our approach can retrieve such factors as well as the kinetic model parameters
for these complex systems. Although our analyses are limited to cases where data can be represented as derived from
closed, concentrated-parameter models (i.e. models where parameters are spatially uniform), we suggest that SA-based
formulation of inverse kinetic ODEs can be applied to transient techniques for the acquisition of kinetic parameters
from experimental data, such as temporal analysis of products (TAP) or step-response experiments.
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